Welcome to Linux Knowledge Base and Tutorial
"The place where you learn linux"
Child Fund

 Create an AccountHome | Submit News | Your Account  

Tutorial Menu
Linux Tutorial Home
Table of Contents
Up to --> The Operating System

· Interprocess Communication
· Signals
· Pipes
· Semaphores
· Message Queues
· Shared Memory
· Sockets

Glossary
MoreInfo
Man Pages
Linux Topics
Test Your Knowledge

Site Menu
Site Map
FAQ
Copyright Info
Terms of Use
Privacy Info
Disclaimer
WorkBoard
Thanks
Donations
Advertising
Masthead / Impressum
Your Account

Communication
Feedback
Forums
Private Messages
Recommend Us
Surveys

Features
HOWTOs
News
News Archive
Submit News
Topics
User Articles
Web Links

Google
Google


The Web
linux-tutorial.info

Who's Online
There are currently, 182 guest(s) and 3 member(s) that are online.

You are an Anonymous user. You can register for free by clicking here

  
Linux Tutorial - The Operating System - Interprocess Communication - Pipes
  Signals ---- Semaphores  


Pipes

The common Linux shells all allow redirection. For example


$ ls | pr | lpr

pipes the output from the ls command listing the directory's files into the standard input of the pr command which paginates them. Finally the standard output from the pr command is piped into the standard input of the lpr command which prints the results on the default printer. Pipes then are unidirectional byte streams which connect the standard output from one process into the standard input of another process. Neither process is aware of this redirection and behaves just as it would normally. It is the shell that sets up these temporary pipes between the processes.


Figure: Pipes

In Linux, a pipe is implemented using two file data structures which both point at the same temporary VFS inode which, in turn, points at a physical page within memory. Figure  5.1 shows that each file data structure contains pointers to different file operation routine vectors: one for writing to the pipe, the other for reading from the pipe.

This hides the underlying differences from the generic system calls which read and write to ordinary files. As the writing process writes to the pipe, bytes are copied into the shared data page and when the reading process reads from the pipe, bytes are copied from the shared data page. Linux must synchronize access to the pipe. It must make sure that the reader and the writer of the pipe are in step and to do this it uses locks, wait queues and signals.

When the writer wants to write to the pipe it uses the standard write library functions. These all pass file descriptors that are indices into the process' set of file data structures, each one representing an open file or, as in this case, an open pipe. The Linux system call uses the write routine pointed at by the file data structure describing this pipe. That write routine uses information held in the VFS inode representing the pipe to manage the write request.

If there is enough room to write all of the bytes into the pipe and, so long as the pipe is not locked by its reader, Linux locks it for the writer and copies the bytes to be written from the process' address space into the shared data page. If the pipe is locked by the reader or if there is not enough room for the data then the current process is made to sleep on the pipe inode's wait queue and the scheduler is called so that another process can run. It is interruptible, so it can receive signals and it will be awakened by the reader when there is enough room for the write data or when the pipe is unlocked. When the data has been written, the pipe's VFS inode is unlocked and any waiting readers sleeping on the inode's wait queue will themselves be awakened.

Reading data from the pipe is a very similar process to writing to it.

Processes are allowed to do non-blocking reads (depending on the mode in which they opened the file or pipe and if there is no data to be read or if the pipe is locked, an error will be returned,as in this case). This means that the process can continue to run. The alternative is to wait on the pipe inode's wait queue until the write process has finished. When both processes have finished with the pipe, the pipe inode is discarded along with the shared data page.

Linux also supports named pipes, also known as FIFOs because pipes operate on a First In, First Out principle. The first data written into the pipe is the first data read from the pipe. Unlike pipes, FIFOs are not temporary objects, they are entities in the file system and can be created using the mkfifo command. Processes are free to use a FIFO so long as they have appropriate access rights to it. The way that FIFOs are opened is a little different from pipes. A pipe (its two file data structures, its VFS inode and the shared data page) is created in one go whereas a FIFO already exists and is opened and closed by its users. Linux must handle readers opening the FIFO before writers open it as well as readers reading before any writers have written to it. That aside, FIFOs are handled almost exactly the same way as pipes and they use the same data structures and operations.

 Previous Page
Signals
  Back to Top
Table of Contents
Next Page 
Semaphores


MoreInfo

Test Your Knowledge

User Comments:


You can only add comments if you are logged in.

Copyright 1996-1999 by David Rusling. Licensed under GNU General Public License (Used with permission of the author). See here for details. All rights reserved.
  




Login
Nickname

Password

Security Code
Security Code
Type Security Code


Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Help if you can!


Amazon Wish List

Did You Know?
The Linux Tutorial welcomes your suggestions and ideas.


Friends



Tell a Friend About Us

Bookmark and Share



Web site powered by PHP-Nuke

Is this information useful? At the very least you can help by spreading the word to your favorite newsgroups, mailing lists and forums.
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters. Articles are the property of their respective owners. Unless otherwise stated in the body of the article, article content (C) 1994-2013 by James Mohr. All rights reserved. The stylized page/paper, as well as the terms "The Linux Tutorial", "The Linux Server Tutorial", "The Linux Knowledge Base and Tutorial" and "The place where you learn Linux" are service marks of James Mohr. All rights reserved.
The Linux Knowledge Base and Tutorial may contain links to sites on the Internet, which are owned and operated by third parties. The Linux Tutorial is not responsible for the content of any such third-party site. By viewing/utilizing this web site, you have agreed to our disclaimer, terms of use and privacy policy. Use of automated download software ("harvesters") such as wget, httrack, etc. causes the site to quickly exceed its bandwidth limitation and are therefore expressly prohibited. For more details on this, take a look here

PHP-Nuke Copyright © 2004 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.
Page Generation: 0.04 Seconds