Welcome to Linux Knowledge Base and Tutorial
"The place where you learn linux"

 Create an AccountHome | Submit News | Your Account  

Tutorial Menu
Linux Tutorial Home
Table of Contents
Up to --> The Kernel

· Kernel Mechanisms
· Bottom Half Handling
· Task Queues
· Wait Queues
· Timers
· Buzz Locks
· Semaphores

Man Pages
Linux Topics
Test Your Knowledge

Site Menu
Site Map
Copyright Info
Terms of Use
Privacy Info
Masthead / Impressum
Your Account

Private Messages

News Archive
Submit News
User Articles
Web Links


The Web

Who's Online
There are currently, 157 guest(s) and 0 member(s) that are online.

You are an Anonymous user. You can register for free by clicking here

Linux Tutorial - The Operating System - The Kernel - Kernel Mechanisms - Bottom Half Handling
  Kernel Mechanisms ---- Task Queues  

Bottom Half Handling

Figure: Bottom Half Handling Data Structures

There are often times when you don't want the kernel to do any work at all. A good example of this is during interrupt processing. When the interrupt was asserted, the processor stopped what it was doing and the operating system delivered the interrupt to the appropriate device driver. Device drivers should not spend too much time handling interrupts as, during this time, nothing else in the system can run. There is often some work that could just as well be done later on. Linux's bottom half handlers were invented so that device drivers and other parts of the Linux kernel could queue work to be done later on. The figure above shows the kernel data structures associated with bottom half handling.

There can be up to 32 different bottom half handlers, which are referenced through a vector of pointers called bh_base. These pointers point to each of the kernel's bottom half handling routines. bh_active and bh_mask have their bits set according to what handlers have been installed and are active. If bit N of bh_mask is set then the Nth element of bh_base contains the address of a bottom half routine. If bit N of bh_active is set then the Nth bottom half handler routine should be called as soon as the scheduler deems reasonable. These indices are statically defined. The timer bottom half handler (index 0) is the highest priority, the console bottom half handler (index 1) is next in priority and so on. Typically the bottom half handling routines have lists of tasks associated with them. For example, the immediate bottom half handler works its way through the immediate tasks queue (tq_immediate), which contains tasks that need to be performed immediately.

Some of the kernel's bottom half handers are device specific, but others are more generic:

This handler is marked as active each time the system's periodic timer interrupts and is used to drive the kernel's timer queue mechanisms,
This handler is used to process console messages,
This handler is used to process tty messages,
This handler handles general network processing,
This is a generic handler used by several device drivers to queue work to be done later.

Whenever a device driver, or some other part of the kernel, needs to schedule work to be done later, it adds work to the appropriate system queue, for example the timer queue, and then signals the kernel that some bottom half handling needs to be done. It does this by setting the appropriate bit in bh_active. Bit 8 is set if the driver has queued something on the immediate queue and wishes the immediate bottom half handler to run and process it. The bh_active bitmask is checked at the end of each system call, just before control is returned to the calling process. If it has any bits set, the bottom half handler routines that are active are called. Bit 0 is checked first, then 1 and so on until bit 31.

The bit in bh_active is cleared as each bottom half handling routine is called. bh_active is transient; it only has meaning between calls to the scheduler and is a way of not calling bottom half handling routines when there is no work for them to do.

 Previous Page
Kernel Mechanisms
  Back to Top
Table of Contents
Next Page 
Task Queues


Test Your Knowledge

User Comments:

You can only add comments if you are logged in.

Copyright 1996-1999 by David Rusling. Licensed under GNU General Public License (Used with permission of the author). See here for details. All rights reserved.



Security Code
Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Help if you can!

Amazon Wish List

Did You Know?
The Linux Tutorial can use your help.


Tell a Friend About Us

Bookmark and Share

Web site powered by PHP-Nuke

Is this information useful? At the very least you can help by spreading the word to your favorite newsgroups, mailing lists and forums.
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters. Articles are the property of their respective owners. Unless otherwise stated in the body of the article, article content (C) 1994-2013 by James Mohr. All rights reserved. The stylized page/paper, as well as the terms "The Linux Tutorial", "The Linux Server Tutorial", "The Linux Knowledge Base and Tutorial" and "The place where you learn Linux" are service marks of James Mohr. All rights reserved.
The Linux Knowledge Base and Tutorial may contain links to sites on the Internet, which are owned and operated by third parties. The Linux Tutorial is not responsible for the content of any such third-party site. By viewing/utilizing this web site, you have agreed to our disclaimer, terms of use and privacy policy. Use of automated download software ("harvesters") such as wget, httrack, etc. causes the site to quickly exceed its bandwidth limitation and are therefore expressly prohibited. For more details on this, take a look here

PHP-Nuke Copyright © 2004 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.
Page Generation: 0.10 Seconds